| >
  #=========================================================# > #FIX UJI AUTOKORELASI SPASIAL# >
  #=========================================================# > library(sp) > library(ape) > library(geosphere) > library(pracma) > library(mvtnorm) > library(Runuran) > library(coda) >  >  > #PANGGILAN >  > getwd() [1] "C:/Users/ALLAH/Documents" > ozone <- read.table("tij 110pb baru mei
  2.csv",header=TRUE, sep=";") > rata <- read.table("rata2 baru
  mei.csv",header=TRUE, sep=";") > p <- read.table("length of i each
  j.csv",header=TRUE, sep=";") >  > n=length(ozone[-(1:5),])*length(ozone[,1]) > n1=length(ozone[,1]) > n2=length(ozone[-(1:5),]) > n3=365 > n4=sum(p) >  > datas <- ozone[,-(1:5)] > data<-list() > for (f in 1:n1) data[f]=list(datas[f,1:p[f,]]) >  > tj <- NULL > for (f in 1:n1) tj[f] <- c(datas[f,p[f,]]) > rata2 <- rata$RATA.RATA > mean.data.wilayah = rata2 > koordinat <- ozone[,2:3] >  > ozone.dists <- as.matrix(dist(cbind(ozone$Long,
  ozone$Lat))) > ozone.dists.inv <- 1/ozone.dists > diag(ozone.dists.inv) <- 0 > ozone.dists.inv[1:5, 1:5]          1        2        3        4        5 1 0.000000 3.130749 2.868183 5.325525 2.632469 2 3.130749 0.000000 5.847130 3.557764 2.726813 3 2.868183 5.847130 0.000000 4.693390 4.740872 4 5.325525 3.557764 4.693390 0.000000 5.201668 5 2.632469 2.726813 4.740872 5.201668 0.000000 > ozone.dists.bin <- (ozone.dists > 0 &
  ozone.dists <= .2) > Moran.I(rata2, ozone.dists.bin) $observed [1] 0.1730037 
 $expected [1] -0.04761905 
 $sd [1] 0.06633233 
 $p.value [1] 0.0008809498 
 >  >  >  >
  #=========================================================# > #PROPOSAL FUNCTION >
  #=========================================================# > proposalfunction <- function(par){ + beta=par[1] + alpha=par[2] + psi=par[3] + W=par[4] + phi=par[5] + sigma2=par[6] +  + a.phi=12 + b.phi=1 + a.sigma2=0.1*0.005 + b.sigma2=0.005 +  + a=a.beta=a.alpha=0.001 + b=b.beta=b.alpha=0.001 +  +  + repeat { + beta=rgamma(1,a.beta,b.beta) + if (beta>0.000038&beta<0.000123) + break + } + beta +  + repeat { + alpha=rgamma(1,a.alpha,b.alpha) + if (alpha>1.636 &alpha<1.865) + break + } + alpha + #if (alpha>1.01 &alpha<1.012) +  + repeat { + phi=rgamma(1,a.phi,b.phi) + if (phi>6.528&phi<20.274) + break + } + phi +  + repeat { + sigma2=rgamma(1,a.sigma2,b.sigma2) + if (sigma2>0.06 &sigma2<0.432) + break + } + sigma2 +  +  + m=0 + v=1000 + #psi0 = matrix(urnorm(1,m,v,lb=0.569,ub=65.97)) + #psi0 +  + psi0 = matrix(urnorm(1,m,v,lb=10.35,ub=65.97)) + psi0 +  + #psi1 = matrix(urnorm(2,m,v,lb=-5.156,ub=1.323)) + #psi1 +  + psi1 = matrix(urnorm(1,m,v,lb=-5.156,ub=-0.765)) + psi1 +  + psi2 = matrix(urnorm(1,m,v,lb=-2.198, ub=-0.324)) +  + #psi=rbind(psi1,psi2) + #psi +  + psi=rbind(psi0,psi1,psi2) + psi +  + m1=rep(1,n1) + X=cbind(m1,ozone$Lat,ozone$Long) + mw=X%*%psi + vw=sigma2*exp(-phi*ozone.dists) +  + W=t(rmvnorm(1,mw,vw)) + mw=round(mw,3) +  + lamdha=abs(exp(W-beta*(tj^alpha))) + log.lamdha=abs(W-beta*(tj^alpha)) + N=NULL + for (i in 1:n1) N[i]=rpois(1,log.lamdha[i,]) +  + par=return(list(beta=beta,alpha=alpha,psi=psi,W=W,phi=phi,sigma2=sigma2,N=N)) + } >  > prop.beta=proposalfunction(2) > prop.beta $beta [1] 8.449539e-05 
 $alpha [1] 1.859809 
 $psi            [,1] [1,] 45.2908167 [2,] -1.5303263 [3,] -0.9955006 
 $W           [,1]  [1,] 113.5690  [2,] 113.5118  [3,] 114.4001  [4,] 113.6071  [5,] 114.1108  [6,] 114.5744  [7,] 114.1289  [8,] 114.1230  [9,] 114.2300 [10,] 114.1394 [11,] 114.1397 [12,] 114.6193 [13,] 114.2646 [14,] 114.9174 [15,] 114.5528 [16,] 113.5857 [17,] 114.2936 [18,] 114.7057 [19,] 113.6373 [20,] 114.6100 [21,] 114.0182 [22,] 113.4766 
 $phi [1] 7.430909 
 $sigma2 [1] 0.1104207 
 $N  [1]  97 127 111 
  99 109 132  98 118 114 133 101
  120 113 118 106  86 106 116 115 [20] 127 104  94 
 >  >  >  >  >  > #=========================================================# > #LOG LIKELIHOOD FUNCTION >
  #=========================================================# > log.likelihood<-function(par) + { + beta=par[1] + alpha=par[2] + psi=par[3] + W=par[4] + phi=par[5] + sigma2=par[6] +  + beta=prop.beta$beta + alpha=prop.beta$alpha + psi=prop.beta$psi + W=prop.beta$W + phi=prop.beta$phi + sigma2=prop.beta$sigma2 +  + b1=log((beta*alpha)^n1) + b2o=NULL + for (f in 1:n1) b2o[f]=-beta*sum(data[[f]]^alpha) + b2=sum(b2o) + b3=sum(n2*W) + b4=sum(exp(W)*(1-exp(-beta*(n3^alpha)))) + b5=b2+b3-b4 + b6o=NULL + for (f in 1:n1)
  b6o[f]=log(sum(dot(data[[f]]^(alpha-1),data[[f]]^(alpha-1)))) + b6=sum(b6o) + log.likelihood1=b1*b5*b6 + return(log.likelihood1) + } >  >  > #=========================================================# > #PRIOR DISTRIBUTION >
  #=========================================================# > prior<-function(par) + { + beta=par[1] + alpha=par[2] + psi=par[3] + W=par[4] + phi=par[5] + sigma2=par[6] +  + beta=prop.beta$beta + alpha=prop.beta$alpha + psi=prop.beta$psi + W=prop.beta$W + phi=prop.beta$phi + sigma2=prop.beta$sigma2 + N=prop.beta$N +  + a.phi=12 + b.phi=1 + a.sigma2=0.1*0.005 + b.sigma2=0.005 +  + a=a.beta=a.alpha=0.001 + b=b.beta=b.alpha=0.001 +  + beta.prior=dgamma(beta,a,b,log=TRUE) + alpha.prior=dgamma(alpha,a,b,log=TRUE) + alpha.prior +  +
  sigma2.prior=dgamma(sigma2,a.sigma2,b.sigma2,log=TRUE) + phi.prior=dgamma(phi,a.phi,b.phi,log=TRUE) +  + m=rep(0,3) + v=diag(1000,3) +  + psi.prior=dmvnorm(t(psi),m,v,log=TRUE) +  + m1=rep(1,n1) + X=cbind(m1,ozone$Lat,ozone$Long) + mw=X%*%psi + vw=sigma2*exp(-phi*ozone.dists) + mw=round(mw,3) +  +  + W.prior=dmvnorm(t(W),mw,vw,log=TRUE) +  + tj=mean.data.wilayah + lamdha=abs(exp(W-beta*(tj^alpha))) + log.lamdha=abs(W-beta*(tj^alpha)) + N.prior=dpois(N,log.lamdha,log=TRUE) +  +
  d.prior=(beta.prior+alpha.prior+sum(psi.prior)+W.prior+phi.prior+sigma2.prior+prod(N.prior)) +
  return(list(beta.prior=beta.prior,alpha.prior=alpha.prior,psi.prior=psi.prior,W.prior=W.prior,phi.prior=phi.prior,sigma2.prior=sigma2.prior,N.prior=N.prior,prior=d.prior)) + } >  > prior=prior(prop.beta) >  > beta.prior=prior$beta > alpha.prior=prior$alpha > psi.prior=prior$psi > W.prior=prior$W > phi.prior=prior$phi > sigma2.prior=prior$sigma2 > N.prior=prior$N.prior >  >  >  >
  #=========================================================# > #ALPHA PARAMETER >
  #=========================================================# > alpha.post <- function(par){ + beta=prop.beta$beta + alpha=prop.beta$alpha + psi=prop.beta$psi + W=prop.beta$W + phi=prop.beta$phi + sigma2=prop.beta$sigma2 + N=prop.beta$N +  + a=a.beta=a.alpha=0.001 + b=b.beta=b.alpha=0.001 +  + #f1=alpha.prior + f1a=alpha^{a.alpha-1} + f1b=exp(-alpha*b.alpha) + f1=f1a*f1b + f2o=NULL + for (f in 1:n1)
  f2o[f]=sum(dot(data[[f]]^(alpha),data[[f]]^(alpha))) + f2=sum(f2o) + f3o=NULL + for (f in 1:n1) f3o[f]=-beta*sum(data[[f]]^alpha) + f3=sum(f3o) + f4=-beta*sum(N*(tj^alpha)) + f5=alpha^{n4} + alpha.post=f5*f1*f2*exp(f3+f4) + } >  > run_metropolis_MCMC_alpha <-
  function(target,startvalue, iterations, burnIn, thin){ + na.alpha=1 +
  chain=(list(chain.alpha=(array(dim=c(iterations+1,na.alpha))))) + sv.alpha=startvalue +  + chain$chain.alpha[1,]<-sv.alpha + chain=list(chain.alpha=chain$chain.alpha) + for (i in 1:iterations){ + prop.alpha=proposalfunction(chain$chain.alpha[i]) + probab.alpha = exp(target(prop.alpha) -
  target(chain$chain.alpha[i])) + if (runif(1) < probab.alpha){ +            
  chain$chain.alpha[i+1] = prop.alpha$alpha + }else{ +            
  chain$chain.alpha[i+1] = chain$chain.alpha[i] +  + print(chain$chain.alpha) + } + x=c(0:(((iterations-burnIn)/(thin))-1)) + m=burnIn+(x*thin)+1 + } +  +
  return(alphapost=mcmc(matrix(chain$chain.alpha[m,]),start=burnIn+1,end=iterations,
  thin=thin)) + } >  > startvalue.beta=0.055 > startvalue.alpha=0.421 > startvalue.psi=c(0.4,0.3229,0.2702) > startvalue.W=rep(17,n1) > startvalue.phi= 6.361 > startvalue.sigma2= 0.183 > iterations=120 > burnIn=20 > thin=10 >  >  >  > #=========================================================# >  >
  hasil.alpha1=run_metropolis_MCMC_alpha(alpha.post,startvalue.alpha,iterations,
  burnIn, thin) >
  hasil.alpha2=run_metropolis_MCMC_alpha(alpha.post,startvalue.alpha,iterations,
  burnIn, thin) >  >  >  >
  #=========================================================# > #JOINT POSTERIOR DISTRIBUTION >
  #=========================================================# > posterior<-function(par){ + return(log.likelihood(par)+prior(par)) + } >  > #=========================================================# > #MARGINAL POSTERIOR DISTRIBUTION >
  #=========================================================# > #BETA PARAMETER >
  #=========================================================# > beta.post <- function(par){ + beta=prop.beta$beta + alpha=prop.beta$alpha + psi=prop.beta$psi + W=prop.beta$W + phi=prop.beta$phi + sigma2=prop.beta$sigma2 + N=prop.beta$N +  + a=a.beta=a.alpha=0.001 + b=b.beta=b.alpha=0.001 +  + c1=beta^(n1+a.beta-1) + c2o=NULL + for (f in 1:n1) c2o[f]=-beta*sum(data[[f]]^alpha) + c2=sum(c2o) + c3=-beta*b.beta + c4=-beta*sum(N*(tj^alpha)) + beta.post=c1*exp(c2+c3+c4) + } >  > run_metropolis_MCMC_beta <-
  function(target,startvalue, iterations, burnIn, thin){ + na.beta=1 + chain=(list(chain.beta=(array(dim=c(iterations+1,na.beta))))) + sv.beta=startvalue.beta +  + chain$chain.beta[1,]<-sv.beta + chain=list(chain.beta=chain$chain.beta) + for (i in 1:iterations){ + prop.beta=proposalfunction(chain$chain.beta[i]) + probab.beta = exp(beta.post(prop.beta) - beta.post(chain$chain.beta[i])) + if (runif(1) < probab.beta){ +            
  chain$chain.beta[i+1] = prop.beta$beta + }else{ +            
  chain$chain.beta[i+1] = chain$chain.beta[i] +  + print(chain$chain.beta) + } + x=c(0:(((iterations-burnIn)/(thin))-1)) + m=burnIn+(x*thin)+1 + } +  +
  return(betapost=mcmc(matrix(chain$chain.beta[m,]),start=burnIn+1,end=iterations,
  thin=thin)) + } >  >  >  >
  hasil.beta1=run_metropolis_MCMC_beta(beta.post,startvalue.beta,iterations,
  burnIn, thin) > hasil.beta2=run_metropolis_MCMC_beta(beta.post,startvalue.beta,iterations,
  burnIn, thin) >  >  >  >  >
  #=========================================================# > #PHI PARAMETER >
  #=========================================================# > phi.post <- function(par){ + beta=prop.beta$beta + alpha=prop.beta$alpha + psi=prop.beta$psi + W=prop.beta$W + phi=prop.beta$phi + sigma2=prop.beta$sigma2 +  + m1=rep(1,n1) + X=cbind(m1,ozone$Lat,ozone$Long) + mw=X%*%psi + vw=sigma2*exp(-phi*ozone.dists) + mw=round(mw,3) +  + a.phi=12 + b.phi=1 +  + j2=(det(vw))^{-0.5} + j3=phi^{a.phi-1} +
  g4=((-0.5*(t(W-mw))%*%solve(vw)%*%(W-mw))-(b.phi*phi)) + j4=exp(g4) + phi.post=j2*j4*j3 + } >  >
  #=========================================================# > run_metropolis_MCMC_phi <- function(target,startvalue,
  iterations, burnIn, thin){ + na.phi=1 +
  chain=(list(chain.phi=(array(dim=c(iterations+1,na.phi))))) + sv.phi=startvalue +  + chain$chain.phi[1,]<-sv.phi + chain=list(chain.phi=chain$chain.phi) + for (i in 1:iterations){ + prop.phi=proposalfunction(chain$chain.phi[i]) + probab.phi = exp(target(prop.phi) -
  target(chain$chain.phi[i])) + if (runif(1) < probab.phi){ +            
  chain$chain.phi[i+1] = prop.phi$phi + }else{ +            
  chain$chain.phi[i+1] = chain$chain.phi[i] +  + print(chain$chain.phi) + } + x=c(0:(((iterations-burnIn)/(thin))-1)) + m=burnIn+(x*thin)+1 +  + } +  +
  return(phipost=mcmc(matrix(chain$chain.phi[m,]),start=burnIn+1,end=iterations,
  thin)) + } >  >
  hasil.phi1=run_metropolis_MCMC_phi(phi.post,startvalue.phi,iterations,
  burnIn, thin) >
  hasil.phi2=run_metropolis_MCMC_phi(phi.post,startvalue.phi,iterations,
  burnIn, thin) >  >  >
  #=========================================================# > #PSI PARAMETER > #=========================================================# > psi.post <- function(par){ + beta=prop.beta$beta + alpha=prop.beta$alpha + psi=prop.beta$psi + W=prop.beta$W + phi=prop.beta$phi + sigma2=prop.beta$sigma2 + psi.prior=prior$psi.prior +  + m1=rep(1,n1) + X=cbind(m1,ozone$Lat,ozone$Long) + mw=X%*%psi + vw=sigma2*exp(-phi*ozone.dists) + mw=round(mw,3) +  + h2=-psi.prior + g4=-0.5*(t(W-mw))%*%solve(vw)%*%(W-mw) + psi.post=exp(h2+g4) + } >  >  >
  #=========================================================# > run_metropolis_MCMC_psi <-
  function(target,startvalue, iterations, burnIn, thin){ + na.psi=3 + chain.psi=NULL + for(i in seq(iterations+1)) chain.psi[[i]] <-
  list(array(dim=c(na.psi,1))) + chain=(list(chain.psi=chain.psi)) + sv.psi= matrix((rep(startvalue.psi,1)),3) +  + chain$chain.psi[[1]]<-sv.psi + chain=list(chain.psi=chain$chain.psi) +  + for (i in 1:iterations){ + prop.psi = proposalfunction(chain$chain.psi[[i]]) + probab.psi = exp(target(prop.psi) -
  target(chain$chain.psi[[i]])) + if (runif(1) < probab.psi){ +            
  chain$chain.psi[[i+1]] <- prop.psi$psi + }else{ +            
  chain$chain.psi[[i+1]] <- chain$chain.psi[[i]] +  + print(chain$chain.psi) + } +  + x=c(0:(((iterations-burnIn)/(thin))-1)) + m=burnIn+(x*thin)+1 +  + chainpsi=(matrix(unlist(chain$chain.psi), nrow =
  iterations+1,byrow=TRUE)) + } +  + return(psipost=mcmc((chainpsi[m,]), start=burnIn+1,
  end=(iterations), thin=thin)) + } >  >  >
  hasil.psi1=run_metropolis_MCMC_psi(psi.post,startvalue.psi,iterations, burnIn,
  thin) >
  hasil.psi2=run_metropolis_MCMC_psi(psi.post,startvalue.psi,iterations,
  burnIn, thin) >  >  >
  #=========================================================# > #SIGMA2 PARAMETER >
  #=========================================================# > sigma2.post <- function(par){ + beta=prop.beta$beta + alpha=prop.beta$alpha + psi=prop.beta$psi + W=prop.beta$W + phi=prop.beta$phi + sigma2=prop.beta$sigma2 +  + m1=rep(1,n1) + X=cbind(m1,ozone$Lat,ozone$Long) + mw=X%*%psi + vw=sigma2*exp(-phi*ozone.dists) + mw=round(mw,3) +  + a.sigma2=0.1*0.005 + b.sigma2=0.005 +  +  + k2=sigma2^{a.sigma2-1} + k3=(det(vw))^{-0.5} +
  g4=((-0.5*(t(W-mw))%*%solve(vw)%*%(W-mw))-(b.sigma2*sigma2)) + k4=exp(g4) + sigma2.post=k2*k3*k4 + return(sigma2.post) + } >  > #=========================================================# > run_metropolis_MCMC_sigma2 <-
  function(target,startvalue, iterations, burnIn, thin){ + na.sigma2=1 +
  chain=(list(chain.sigma2=(array(dim=c(iterations+1,na.sigma2))))) + sv.sigma2=startvalue +  + chain$chain.sigma2[1,]<-sv.sigma2 + chain=list(chain.sigma2=chain$chain.sigma2) + for (i in 1:iterations){ + prop.sigma2=proposalfunction(chain$chain.sigma2[i]) + probab.sigma2 = exp(target(prop.sigma2) -
  target(chain$chain.sigma2[i])) + if (runif(1) < probab.sigma2){ +            
  chain$chain.sigma2[i+1] = prop.sigma2$sigma2 + }else{ +            
  chain$chain.sigma2[i+1] = chain$chain.sigma2[i] +  + print(chain$chain.sigma2) + } + x=c(0:(((iterations-burnIn)/(thin))-1)) + m=burnIn+(x*thin)+1 + } +  + return(sigma2post=mcmc(matrix(chain$chain.sigma2[m,]),start=burnIn+1,end=iterations,
  thin)) + } >  >
  hasil.sigma21=run_metropolis_MCMC_sigma2(sigma2.post,startvalue.sigma2,iterations,
  burnIn, thin) > hasil.sigma22=run_metropolis_MCMC_sigma2(sigma2.post,startvalue.sigma2,iterations,
  burnIn, thin) >  >  >
  #=========================================================# > #W PARAMETER >
  #=========================================================# > W.post <- function(par){ + beta=prop.beta$beta + alpha=prop.beta$alpha + psi=prop.beta$psi + W=prop.beta$W + phi=prop.beta$phi + sigma2=prop.beta$sigma2 + N=prop.beta$N +  + m1=rep(1,n1) + X=cbind(m1,ozone$Lat,ozone$Long) + mw=X%*%psi + vw=sigma2*exp(-phi*ozone.dists) + mw=round(mw,3) +  + g1=sum(n2*W) + g2=sum((N.prior)*W) + g3=sum(exp(W)) + g4=-0.5*(t(W-mw))%*%solve(vw)%*%(W-mw) + W.post=exp(g1+g2-g3-g4) + } >  >  >
  #=========================================================# > run_metropolis_MCMC_W <- function(target,startvalue,
  iterations, burnIn, thin){ + na.W=n1 + chain.W=NULL + for(i in seq(iterations+1)) chain.W[[i]] <-
  list(array(dim=c(na.W,1))) + chain=(list(chain.W=chain.W)) + sv.W= matrix((rep(startvalue.W,1)),n1) +  + chain$chain.W[[1]]<-sv.W + chain=list(chain.W=chain$chain.W) +  + for (i in 1:iterations){ + prop.W= proposalfunction(chain$chain.W[[i]]) + probab.W = exp(target(prop.W) -
  target(chain$chain.W[[i]])) + if (runif(1) < probab.W){ +            
  chain$chain.W[[i+1]] <- prop.W$W + }else{ +            
  chain$chain.W[[i+1]] <- chain$chain.W[[i]] +  + print(chain$chain.W) + } +  + x=c(0:(((iterations-burnIn)/(thin))-1)) + m=burnIn+(x*thin)+1 +  + chainW=(matrix(unlist(chain$chain.W), nrow =
  iterations+1,byrow=TRUE)) + } +  + return(Wpost=mcmc((chainW[m,]), start=burnIn+1,
  end=(iterations), thin=thin)) + } >  >  >
  hasil.W1=run_metropolis_MCMC_W(W.post,startvalue.W,iterations, burnIn, thin) >
  hasil.W2=run_metropolis_MCMC_W(W.post,startvalue.W,iterations, burnIn, thin) >  >  > obj.beta1<-(NA); obj.beta1<-hasil.beta1 > obj.beta2<-(NA); obj.beta2<-hasil.beta2 > obj.alpha1<-(NA); obj.alpha1<-hasil.alpha1 > obj.alpha2<-(NA); obj.alpha2<-hasil.alpha2 >  > obj.phi1<-(NA); obj.phi1<-hasil.phi1 > obj.phi2<-(NA); obj.phi2<-hasil.phi2 > obj.sigma2.1<-(NA);
  obj.sigma2.1<-hasil.sigma21 > obj.sigma2.2<-(NA);
  obj.sigma2.2<-hasil.sigma22 > obj.psi1<-(NA); obj.psi1<-hasil.psi1 > obj.psi2<-(NA); obj.psi2<-hasil.psi2 >  > obj.beta=mcmc.list(obj.beta1,obj.beta2) > obj.alpha=mcmc.list(obj.alpha1,obj.alpha2) > obj.phi<-mcmc.list(obj.phi1,obj.phi2) >
  obj.sigma2<-mcmc.list(obj.sigma2.1,obj.sigma2.2) > obj.psi<-mcmc.list(obj.psi1,obj.psi2) >  > gelman.diag(obj.beta) Potential scale reduction factors: 
      Point est.
  Upper C.I. [1,]      
  1.01       1.07 
 > gelman.diag(obj.alpha) Potential scale reduction factors: 
      Point est.
  Upper C.I. [1,]      
  1.17       1.72 
 > gelman.diag(obj.phi) Potential scale reduction factors: 
      Point est.
  Upper C.I. [1,]      
  1.25       2.03 
 > gelman.diag(obj.sigma2) Potential scale reduction factors: 
      Point est.
  Upper C.I. [1,]     
  0.918      0.925 
 > gelman.diag(obj.psi) Potential scale reduction factors: 
      Point est.
  Upper C.I. [1,]     
  0.928      0.971 [2,]     
  0.972      1.130 [3,]     
  0.935      0.964 
 Multivariate psrf 
 0.987 >  > summary(hasil.beta1) 
 Iterations = 21:111 Thinning interval = 10  Number of chains = 1  Sample size per chain = 10  
 1. Empirical mean and standard deviation for each
  variable,    plus standard
  error of the mean: 
           Mean             SD       Naive SE Time-series SE      
  6.819e-05      1.693e-05      5.353e-06      5.353e-06  
 2. Quantiles for each variable: 
      2.5%       25%       50%       75%    
  97.5%  4.443e-05 5.887e-05 6.752e-05 7.478e-05 9.714e-05  
 > summary(hasil.beta2) 
 Iterations = 21:111 Thinning interval = 10  Number of chains = 1  Sample size per chain = 10  
 1. Empirical mean and standard deviation for each
  variable,    plus standard
  error of the mean: 
          
  Mean             SD       Naive SE Time-series SE      
  6.871e-05      2.942e-05      9.304e-06      9.304e-06  
 2. Quantiles for each variable: 
      2.5%       25%       50%       75%    
  97.5%  4.089e-05 4.544e-05 5.606e-05 9.073e-05 1.177e-04  
 > summary(hasil.alpha1) 
 Iterations = 21:111 Thinning interval = 10  Number of chains = 1  Sample size per chain = 10  
 1. Empirical mean and standard deviation for each
  variable,    plus standard
  error of the mean: 
          
  Mean             SD       Naive SE Time-series SE        
  1.75380        0.07869        0.02488        0.02488  
 2. Quantiles for each variable: 
  2.5%   25%  
  50%   75% 97.5%  1.648 1.685 1.755 1.815 1.856  
 > summary(hasil.alpha2) 
 Iterations = 21:111 Thinning interval = 10  Number of chains = 1  Sample size per chain = 10  
 1. Empirical mean and standard deviation for each
  variable,    plus standard
  error of the mean: 
          
  Mean             SD       Naive SE Time-series SE         
  1.7591         0.0721         0.0228         0.0228  
 2. Quantiles for each variable: 
  2.5%   25%  
  50%   75% 97.5%  1.654 1.698 1.780 1.814 1.854  
 > summary(hasil.phi1) 
 Iterations = 21:111 Thinning interval = 10  Number of chains = 1  Sample size per chain = 10  
 1. Empirical mean and standard deviation for each variable,    plus standard
  error of the mean: 
          
  Mean             SD       Naive SE Time-series SE        
  12.7246         3.0773         0.9731         0.9731  
 2. Quantiles for each variable: 
   2.5%    25%   
  50%    75%  97.5%   8.993 10.358 13.047
  13.890 18.018  
 > summary(hasil.phi2) 
 Iterations = 21:111 Thinning interval = 10  Number of chains = 1  Sample size per chain = 10  
 1. Empirical mean and standard deviation for each
  variable,    plus standard
  error of the mean: 
          
  Mean             SD      
  Naive SE Time-series SE        
  10.1635         2.0377         0.6444         0.6444  
 2. Quantiles for each variable: 
   2.5%    25%   
  50%    75%  97.5%   6.926  8.877 10.374 11.326 12.983  
 > summary(hasil.sigma21) 
 Iterations = 21:111 Thinning interval = 10  Number of chains = 1  Sample size per chain = 10  
 1. Empirical mean and standard deviation for each
  variable,    plus standard
  error of the mean: 
          
  Mean             SD       Naive SE Time-series SE        
  0.22619        0.12347        0.03904        0.03904  
 2. Quantiles for each variable: 
   2.5%    25%   
  50%    75%  97.5%  0.0671 0.1036 0.2470 0.3254 0.3906  
 > summary(hasil.sigma22) 
 Iterations = 21:111 Thinning interval = 10  Number of chains = 1  Sample size per chain = 10  
 1. Empirical mean and standard deviation for each
  variable,    plus standard
  error of the mean: 
          
  Mean             SD       Naive SE Time-series SE         
  0.1995         0.1075         0.0340         0.0340  
 2. Quantiles for each variable: 
    2.5%     25%    
  50%     75%   97.5%  0.07402 0.11909 0.15245 0.29801 0.34810  
 > summary(hasil.psi1) 
 Iterations = 21:111 Thinning interval = 10  Number of chains = 1  Sample size per chain = 10  
 1. Empirical mean and standard deviation for each
  variable,    plus standard
  error of the mean: 
        Mean      SD Naive SE Time-series SE [1,] 36.293 16.7734  
  5.3042         5.3042 [2,] -3.607 
  1.3263   0.4194         0.4194 [3,] -1.274 
  0.5864   0.1854         0.2101 
 2. Quantiles for each variable: 
        2.5%    25%   
  50%     75%   97.5% var1 14.339 27.161 30.984 46.8584 63.7397 var2 -5.102 -4.330 -3.995 -3.2466 -1.2284 var3 -1.921 -1.782 -1.469 -0.7025 -0.4585 
 > summary(hasil.psi1) 
 Iterations = 21:111 Thinning interval = 10  Number of chains = 1  Sample size per chain = 10  
 1. Empirical mean and standard deviation for each
  variable,    plus standard
  error of the mean: 
        Mean      SD Naive SE Time-series SE [1,] 36.293 16.7734  
  5.3042         5.3042 [2,] -3.607 
  1.3263   0.4194         0.4194 [3,] -1.274 
  0.5864   0.1854         0.2101 
 2. Quantiles for each variable: 
        2.5%    25%   
  50%     75%   97.5% var1 14.339 27.161 30.984 46.8584 63.7397 var2 -5.102 -4.330 -3.995 -3.2466 -1.2284 var3 -1.921 -1.782 -1.469 -0.7025 -0.4585 
 > summary(hasil.W1) 
 Iterations = 21:111 Thinning interval = 10  Number of chains = 1  Sample size per chain = 10  
 1. Empirical mean and standard deviation for each
  variable,    plus standard
  error of the mean: 
        Mean    SD Naive SE Time-series SE  [1,] 110.2
  44.91    14.20          14.20  [2,] 111.3
  44.93    14.21          14.21  [3,] 111.5
  45.08    14.26          14.26  [4,] 110.9
  45.01    14.23          14.23  [5,] 111.5
  45.02    14.24          14.24  [6,] 111.9
  45.13    14.27          14.27  [7,] 111.7
  45.02    14.24          14.24  [8,] 111.3
  44.83    14.18          14.18  [9,] 111.3
  45.03    14.24          14.24 [10,] 111.4 44.92   
  14.21          14.21 [11,] 111.3 44.88   
  14.19          14.19 [12,] 111.9 44.98   
  14.22          14.22 [13,] 111.8 45.29   
  14.32          14.32 [14,] 111.8 44.98   
  14.22          14.22 [15,] 111.9 45.23   
  14.30          14.30 [16,] 111.1 44.85   
  14.18          14.18 [17,] 111.6 44.91   
  14.20          14.20 [18,] 111.8 45.13   
  14.27          14.27 [19,] 111.0 44.90   
  14.20          14.20 [20,] 112.0 44.86   
  14.19          14.19 [21,] 111.4 45.08   
  14.26          14.26 [22,] 111.0 45.13   
  14.27          14.27 
 2. Quantiles for each variable: 
        2.5%   25%  
  50%   75% 97.5% var1  32.14 92.05
  121.2 140.4 161.6 var2  33.14 93.91
  122.0 141.6 162.6 var3  33.01 94.09
  122.1 141.7 163.3 var4  32.45 93.32
  122.0 141.0 162.3 var5  32.92 94.68
  122.5 142.2 162.4 var6  33.48 94.64
  122.5 142.5 163.7 var7  33.69 93.95
  122.7 142.3 163.2 var8  33.27 93.93
  121.9 141.5 162.5 var9  32.94 94.24
  121.9 141.3 163.2 var10 33.19 94.03 122.0 141.5 162.8 var11 33.06 93.93 122.0 141.5 162.2 var12 33.93 94.57 122.3 142.3 163.7 var13 32.92 94.62 122.6 142.3 163.5 var14 33.76 94.44 122.4 142.3 163.3 var15 33.44 94.55 122.5 142.5 164.0 var16 33.18 93.57 121.7 141.5 162.4 var17 33.35 94.69 122.2 141.7 162.9 var18 33.47 94.22 122.4 142.4 163.7 var19 32.68 93.75 122.1 141.2 162.3 var20 34.35 94.56 122.6 142.9 163.4 var21 32.93 94.07 122.0 141.6 163.3 var22 32.31 93.42 121.8 141.1 162.8 
 > summary(hasil.W2) 
 Iterations = 21:111 Thinning interval = 10  Number of chains = 1  Sample size per chain = 10  
 1. Empirical mean and standard deviation for each
  variable,    plus standard
  error of the mean: 
        Mean    SD Naive SE Time-series SE  [1,] 130.8
  69.01    21.82          21.82  [2,] 131.6
  68.73    21.74          21.74  [3,] 131.9
  68.65    21.71          21.71  [4,] 131.2
  68.69    21.72          21.72  [5,] 131.8
  68.57    21.68          21.68  [6,] 132.0
  68.64    21.70          21.70  [7,] 132.1
  68.98    21.81          21.81  [8,] 131.8
  68.74    21.74          21.74  [9,] 132.0
  68.59    21.69          21.69 [10,] 131.7 68.72   
  21.73          21.73 [11,] 131.8 68.57   
  21.68          21.68 [12,] 132.2 68.84   
  21.77          21.77 [13,] 131.9 68.77   
  21.75          21.75 [14,] 132.0 68.76   
  21.74          21.74 [15,] 132.3 68.73   
  21.74          21.74 [16,] 131.6 68.86   
  21.78          21.78 [17,] 132.0 68.72   
  21.73          21.73 [18,] 131.9 68.66   
  21.71          21.71 [19,] 131.7 68.87   
  21.78          21.78 [20,] 132.5 68.87   
  21.78          21.78 [21,] 131.9 68.77   
  21.75          21.75 [22,] 131.4 68.97   
  21.81          21.81 
 2. Quantiles for each variable: 
        2.5%   25%  
  50%   75% 97.5% var1  51.58 78.52
  114.5 193.1 231.8 var2  53.21 79.51
  115.0 194.1 231.8 var3  53.28 80.00
  115.4 194.6 231.7 var4  52.56 79.17
  114.8 193.5 231.3 var5  53.00 79.84
  115.6 193.5 232.1 var6  53.54 80.07
  115.4 194.0 232.3 var7  53.01 80.05
  115.5 195.0 232.5 var8  53.01 80.00
  114.9 194.5 232.0 var9  53.25 80.10
  115.4 194.5 232.0 var10 53.10 79.92 114.8 194.3 232.0 var11 53.53 80.15 114.9 194.2 231.9 var12 53.35 80.10 115.7 195.0 232.4 var13 53.48 80.10 115.1 194.3 232.4 var14 53.44 80.16 115.2 194.8 232.2 var15 53.80 80.07 115.8 194.8 232.5 var16 52.98 79.60 114.7 194.2 232.1 var17 53.31 79.71 115.6 194.4 232.0 var18 53.30 80.11 115.3 194.0 232.1 var19 53.00 79.51 115.0 194.7 232.0 var20 53.48 80.17 116.3 195.8 232.2 var21 53.11 79.91 115.5 194.9 231.9 var22 52.22 79.07 115.0 193.9 232.1 
 >  >  > log.likelihood(1) [1] 4.777355e+55 > log.likelihood=log.likelihood(1) > likelihood=exp(log.likelihood) > D.bar<- (-2*mean(log.likelihood)) > D.bar [1] -9.55471e+55 >  > mean.beta1=7.241e-05 > mean.beta2=7.253e-05  > mean.alpha1=1.7475165  > mean.alpha2=1.7473720 > mean.phi1=12.03708 > mean.phi2= 12.05122  > mean.sigma2.1=0.189456    > mean.sigma2.2=0.187189 >  >  > x=c(0:(((iterations-burnIn)/(thin))-1)) > m=burnIn+(x*thin)+1 >  > beta1=hasil.beta1[length(m),] > beta2=hasil.beta2[length(m),] > alpha1=hasil.alpha1[length(m),] > alpha2=hasil.alpha2[length(m),] > phi1=hasil.phi1[length(m),] > phi2=hasil.phi2[length(m),] > sigma2.1=hasil.sigma21[length(m),] > sigma2.2=hasil.sigma22[length(m),] > psi1=hasil.psi1[length(m),] > psi2=hasil.psi2[length(m),] >  >  > D.hat.beta1=-2*beta1 > D.hat.beta1 [1] -8.565151e-05 > D.hat.beta2=-2*beta2 > D.hat.beta2 [1] -0.0002152555 > D.hat.alpha1=-2*alpha1 > D.hat.alpha1 [1] -3.491078 > D.hat.alpha2=-2*alpha2 > D.hat.alpha2 [1] -3.370302 > D.hat.phi1=-2*phi1 > D.hat.phi1 [1] -21.29575 > D.hat.phi2=-2*phi2 > D.hat.phi2 [1] -22.8782 > D.hat.sigma2.1=-2*sigma2.1 > D.hat.sigma2.1 [1] -0.6151423 > D.hat.sigma2.2=-2*sigma2.2 > D.hat.sigma2.2 [1] -0.7036207 >  > pD.beta1 <- D.bar - D.hat.beta1 > pD.beta2 <- D.bar - D.hat.beta2 > pD.alpha1 <- D.bar - D.hat.alpha1 > pD.alpha2 <- D.bar - D.hat.alpha2 > pD.phi1 <- D.bar - D.hat.phi1 > pD.phi2 <- D.bar - D.hat.phi2 > pD.sigma2.1 <- D.bar - D.hat.sigma2.1 > pD.sigma2.2 <- D.bar - D.hat.sigma2.2 > pD.beta1 [1] -9.55471e+55 > pD.beta2 [1] -9.55471e+55 > pD.alpha1 [1] -9.55471e+55 > pD.alpha2 [1] -9.55471e+55 > pD.phi1 [1] -9.55471e+55 > pD.phi2 [1] -9.55471e+55 > pD.sigma2.1 [1] -9.55471e+55 > pD.sigma2.2 [1] -9.55471e+55 >  >  >  > DIC.beta1<-pD.beta1+D.bar > DIC.beta2<-pD.beta2+D.bar > DIC.alpha1<-pD.alpha1+D.bar > DIC.alpha2<-pD.alpha2+D.bar > DIC.phi1<-pD.phi1+D.bar > DIC.phi2<-pD.phi2+D.bar > DIC.sigma2.1<-pD.sigma2.1+D.bar > DIC.sigma2.2<-pD.sigma2.2+D.bar >  > DIC<- rbind("DIC.beta1"=DIC.beta1,DIC.beta2=DIC.beta2,DIC.alpha1=DIC.alpha1 +
  ,DIC.alpha2=DIC.alpha2,DIC.phi1=DIC.phi1,DIC.phi2=DIC.phi2 +
  ,"DIC.sigma2.1"=DIC.sigma2.1,DIC.sigma2.2=DIC.sigma2.2) > DIC                      
  [,1] DIC.beta1   
  -1.910942e+56 DIC.beta2   
  -1.910942e+56 DIC.alpha1  
  -1.910942e+56 DIC.alpha2  
  -1.910942e+56 DIC.phi1    
  -1.910942e+56 DIC.phi2    
  -1.910942e+56 DIC.sigma2.1 -1.910942e+56 DIC.sigma2.2 -1.910942e+56 > DIC.beta1-DIC.beta2 [1] 0 > DIC.alpha1-DIC.alpha2 [1] 0 > DIC.phi1-DIC.phi2 [1] 0 > DIC.sigma2.1-DIC.sigma2.2 [1] 0 >  > beta=beta1 > alpha=alpha1 > sigma2=sigma2.2 > phi=phi2 >  > W=hasil.W1[length(m),] > p1=t(exp(W)) > p2o=NULL > for (f in 1:n1)
  p2o[f]=beta*alpha*data[[f]]^{alpha-1} There were 22 warnings (use warnings() to see them) > p2=p2o > p3o=NULL > for (f in 1:n1)
  p3o[f]=exp(-beta*(data[[f]]^{alpha})) There were 22 warnings (use warnings() to see them) > p3=p3o >  >  > rata2.rank <- read.table("jumlah baru mei
  dirank.csv",header=TRUE, sep=";") > rata2.rank1 <- read.table("rata2 baru mei dirank.csv",header=TRUE,
  sep=";") >  > mean.snhpp=p1*(1-p3) > log.mean.snhpp=log(mean.snhpp) > log.mean.snhpp         [,1]     [,2]    
  [,3]     [,4]     [,5]    
  [,6]     [,7]     [,8] [1,] 160.856 161.8093 162.8429 161.7383 164.3655
  163.0207 162.4406 161.8066         
  [,9]    [,10]    [,11]   
  [,12]    [,13]    [,14]   
  [,15]    [,16] [1,] 162.8325 163.7615 161.6297 162.9942 162.7554
  162.5355 163.4167 161.5743        
  [,17]    [,18]    [,19]   
  [,20]    [,21]    [,22] [1,] 162.4133 163.0269 161.7859 163.0163 162.5874
  162.5492 >  > SNHPP1=p1*p2*p3 > SNHPP1             
  [,1]         [,2]         [,3]         [,4]         [,5] [1,] 5.455587e+68 1.480252e+69 3.515418e+69
  1.318314e+69 4.126419e+69             
  [,6]         [,7]         [,8]         [,9]        [,10] [1,] 4.971097e+69 2.783076e+69 1.352266e+69
  3.478919e+69 3.872945e+69            
  [,11]        [,12]       [,13]        [,14]        [,15] [1,] 1.044928e+69 4.840973e+69 3.81267e+69 3.059999e+69
  7.386176e+69           
  [,16]        [,17]        [,18]        [,19]        [,20] [1,] 1.17026e+69 2.287816e+69 5.001907e+69 1.324565e+69
  4.180939e+69            
  [,21]        [,22] [1,] 3.222895e+69 2.620884e+69 > SNHPP=log(SNHPP1) >  >
  cbind(t(SNHPP),sort(t(SNHPP)),order(t(SNHPP)),rata2.rank)    t(SNHPP)
  sort(t(SNHPP)) order(t(SNHPP))       
  LOCR WILAYAHR JUMLAHR 1  158.2724       158.2724               1
      CHO            5     
  12 2  159.2706       158.9223              11
      ACO            1     
  17 3  160.1355       159.0356              16
      MON            4     
  23 4  159.1547       159.1547               4
      XAL           22     
  23 5  160.2958       159.1595              19
      CES            3     
  25 6  160.4820       159.1802               8
      TAX           18     
  28 7  159.9019       159.2706               2
      TLA           19     
  32 8  159.1802       159.7060              17
      LAG           10     
  36 9  160.1251       159.8419              22
      SAG           14     
  44 10 160.2324      
  159.9019               7
      MER           11     
  45 11 158.9223      
  159.9968              14
      TAH           17     
  47 12 160.4555      
  160.0487              21
      FAC            8     
  48 13 160.2167      
  160.1251               9
      UIZ           21     
  51 14 159.9968       160.1355               3
      AZC            2     
  52 15 160.8780      
  160.2167              13
      CUA            7     
  58 16 159.0356      
  160.2324              10
      IZT            9     
  63 17 159.7060      
  160.2958               5
      TAC           16     
  65 18 160.4882      
  160.3089              20
      PLA           13     
  68 19 159.1595      
  160.4555              12
      TPN           20     
  72 20 160.3089      
  160.4820               6
      PED           12     
  79 21 160.0487      
  160.4882              18
      COY            6     
  85 22 159.8419      
  160.8780              15
      SUR           15     
  97            LOC
  WILAYAH JUMLAH 1 
      ACO           1    
  17 2 
      AZC           2    
  52 3 
      CES           3    
  25 4 
      MON           4    
  23 5 
      CHO           5    
  12 6 
      COY           6    
  85 7 
      CUA           7    
  58 8 
      FAC           8    
  48 9 
      IZT           9    
  63 10
      LAG          10    
  36 11
      MER          11    
  45 12
      PED          12    
  79 13
      PLA          13    
  68 14
      SAG          14    
  44 15
      SUR          15    
  97 16
      TAC          16    
  65 17
      TAH          17    
  47 18
      TAX          18    
  28 19
      TLA          19    
  32 20
      TPN          20    
  72 21
      UIZ          21    
  51 22
      XAL          22    
  23 >
  cbind(NHPPS=order(t(SNHPP)),JUMLAH=rata2.rank$WILAYAHR)       NHPPS
  JUMLAH  [1,]     1     
  5  [2,]    11     
  1  [3,]    16     
  4  [4,]     4    
  22  [5,]    19     
  3  [6,]     8    
  18  [7,]     2    
  19  [8,]    17    
  10  [9,]    22    
  14 [10,]     7     11 [11,]    14     17 [12,]    21      8 [13,]     9     21 [14,]     3      2 [15,]    13      7 [16,]    10      9 [17,]     5     16 [18,]    20     13 [19,]    12     20 [20,]     6     12 [21,]    18      6 [22,]    15     15 >  >  >  
 | 
